Count of Range Sum

Desicription

Given an integer array nums, return the number of range sums that lie in [lower, upper] inclusive.
Range sum S(i, j) is defined as the sum of the elements in nums between indices i and j (i ≤ j), inclusive.

Note:

A naive algorithm of O(n2) is trivial. You MUST do better than that.

Example:

1
2
3
Input: nums = [-2,5,-1], lower = -2, upper = 2,
Output: 3
Explanation: The three ranges are : [0,0], [2,2], [0,2] and their respective sums are: -2, -1, 2.

Solution

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
class Solution {
public:
int countRangeSum(std::vector<int>& nums, int lower, int upper) {
auto sums = std::multiset<long long>();
int res = 0;
sums.insert(0);
long long sum = 0;
for(auto num : nums) {
sum += num;
res += std::distance(sums.lower_bound(sum - upper), sums.upper_bound(sum - lower));
sums.insert(sum);
}
return res;
}
};